
ZAMM Whitepaper May 2025

ZAMM: A Minimal Multitoken AMM
Version 1.0 • May 2025

z0r0z

Abstract

ZAMM is a singleton automated market-maker that unifies trading, liquidity, and token factory
logic inside one ERC-6909 contract. It generalizes the constant-product formula to natively
support ETH, ERC-20s, and ERC-6909 ids—including liquidity-provider (LP) shares and freshly
minted “coins”. By exploiting transient storage (EIP-1153) for intra-block balance accounting,
ZAMM can execute multi-hop swaps in half the gas of contemporary AMMs while preserving the
composability and simplicity that made early DEXs successful. This paper describes ZAMM’s
architecture, core algorithms, security model, and expected performance to guide both developers
integrating the protocol and non-technical readers seeking intuition.

1 Motivation

Gas efficiency. Layer 1 Ethereum remains expensive. Users prefer passive, full-range liquidity
positions that do not require continuous management, while swapping through monolithic routers
or deploying pair contracts incurs redundant storage writes and external calls.
Simplicity. The original Bitcoin and Uniswap whitepapers proved that elegance enables
adoption. ZAMM purposely avoids exotic curves, bespoke NFT positions, or multi-contract
factories that complicate audits and user education.
Multitoken future. ERC-6909 compresses the universe of on-chain assets into a single ledger
keyed by ids. It offers the convenience of ERC-1155 without its callback hazards and matches
the direction of smart-account standards such as ERC-7702. ZAMM embraces this paradigm
from genesis.

2 Design Goals

1. One contract, many assets. All pools, LP shares, and factory-minted coins coexist
under the same address.

2. Constant-product invariance. Preserve the battle-tested x y = k intuition for pre-
dictable pricing.

3. Lowest possible gas. Remove every extraneous SSTORE, external call, and memory
allocation; rely on transient storage for flash credit.

4. Unified interface. A single, symmetrical API that serves both EOAs and smart contracts;
power users can batch these calls via ERC-7702, composing custom strategies in one atomic
transaction.

5. Auditable security. Keep the surface small enough for human review yet leverage known
security patterns (reentrancy guard, safe-transfer libraries, Solidity’s overflow checks).

1



ZAMM Whitepaper May 2025

3 System Overview

3.1 Actors

• Traders swap one asset for another at the prevailing pool price.

• Liquidity Providers deposit pairs of assets and receive fungible LP shares (ERC-6909
ids) that accrue fees.

• Coin Creators call coin() to mint a new id and optionally bootstrap its market.

• Protocol Owner can direct a portion of fee growth to feeTo for long-term sustainability.

3.2 Key Primitives

ERC-6909 Ledger Each id maps to a fungible balance. Pool IDs are 256-bit hashes of the
PoolKey tuple, guaranteeing a unique and collision-resistant namespace. Separately, a
simple incrementing counter (coins++) assigns sequential IDs to factory-minted native “zCoins.”

Pool Structure For each unique tuple (id0, id1, T0, T1, f)—where T denotes the token
contract address (or 0x00 for native ETH), id is the ERC-6909 id (zero for ERC-20/ETH), and
f is the swap fee in basis points—ZAMM records:

• current reserves (R0, R1)
• time-weighted price accumulators for on-chain oracles
• total LP supply S
• last invariant klast for protocol fee calculation

Transient Balance Table (Flash Credits) Using EIP-1153’s tstore/tload, temporary bal-
ances are recorded per–msg.sender for the duration of a transaction. Multi-hop routes therefore
move value through memory instead of the ERC-6909 ledger, eliminating needless events and
gas.

4 Core Algorithms

4.1 Swap

Fee notation. Let the swap fee be f basis-points (e.g. f = 30 for 0.30%). Define the net-inflow
factor

ϕ = 1− f

10 000
,

so the pool effectively receives only the fraction ϕ of the trader’s input.

Exact–In

For a user-supplied amount Ain the pool balance increases by

A⋆
in = ϕAin.

Imposing the constant-product invariant(
Rin +A⋆

in

)(
Rout −Aout

)
= RinRout,

and solving for Aout yields

Aout =
ϕAinRout

Rin + ϕAin
.

2



ZAMM Whitepaper May 2025

Exact–Out

For a target output Aout the pool must receive

Ain =
RinAout

(Rout −Aout)ϕ
+ 1,

where the extra “+1” wei is always added by the reference implementation to guarantee the
integer ceiling, ensuring the pool is never under-paid—even when the preceding fraction is
already an integer.

Invariant check (low-level swap)

After transferring the optimistic outputs and executing any callback, the contract recomputes
the balances and verifies(

10 000R′
0 − f ∆in

0

) (
10 000R′

1 − f ∆in
1

)
≥ (10 000)2R0R1,

which is algebraically equivalent to the fee-adjusted condition(
R′

0 − (1− ϕ)∆in
0

) (
R′

1 − (1− ϕ)∆in
1

)
≥ R0R1.

Equality holds for a vanilla single-sided swap with no fee (f = 0).

4.2 Liquidity Management

Add mints shares proportional to the lesser of (∆R0, ∆R1) against current reserves. The first
LP locks a tiny MINIMUM_LIQUIDITY to avoid division-by-zero griefing.
Remove burns shares and returns underlying assets linearly.
Fee-on mints 1

6 of
√
k growth to feeTo when enabled, mirroring Uniswap V2.

5 Factory Mint (coin())

Creates a new incremental id, mints an initial supply to the designated creator address, and
emits a URI event for off-chain metadata—no state bloat required.

6 Hook Extension System (“Cooks”)

A cook is any contract whose address is packed into the feeOrHook field of a PoolKey. At run-time
ZAMM dispatches two optional callbacks:

beforeAction(sig, poolId, sender, data)-> feeBps

afterAction(sig, poolId, sender, d0, d1, dLiq, data)

• Dynamic fees — return a custom basis-point value from beforeAction.
• Range vaults / CL-layers — rebalance (withdraw-swap-add) the cook’s own LP position,
or mint/burn a synthetic vault share (an ERC-6909 id issued by the cook) whenever the
reserve ratio drifts outside a predefined band.

• Programmable trades — implement on-chain limit orders, oracle-gated quotes, or fee
rebates.

Because the kernel never delegates or delegatecalls, a faulty cook can at worst revert its own
pool; global safety is preserved.

7 Order-Book and Timelock Escrow

Beyond swaps, ZAMM exposes two auxiliary primitives:

3



ZAMM Whitepaper May 2025

Order-Book A maker posts an OTC quote by hashing the tuple
(maker, tokenIn, idIn, amtIn, . . . ) into orderHash, then optionally escrows ETH or ERC-6909
internally. Takers may fill against the hash either partially or fully. Invariant: only the signed
tuple is honoured; price or size cannot mutate mid-fill.

Timelock Escrow Any asset (ETH, ERC-20, ERC-6909) can be locked until a future times-
tamp:

lockup(token, to, id, amount, unlockTime)

The recipient later calls unlock once the lock expires. Use-cases include cliff-vesting, DAO
payroll, or delayed team distributions—without deploying extra contracts.

Both modules reuse the same lock reentrancy guard and transient balance map, keeping gas
overhead minimal.

8 Transient Storage: Flash Credits

When a router calls two consecutive pools, the output of the first hop is written to transient
storage instead of transferring tokens on-chain. Subsequent hops read and clear this credit,
paying only memory gas. At function end the EVM discards the transient map, guaranteeing
atomicity and preventing leftover dust. This saves ˜15k gas per internal transfer and over 100k
on deep paths.

9 Security Analysis

• Reentrancy: a single lock modifier using transient storage deters nested calls.
• Overflow: reserves are bounded to 2112− 1; arithmetic uses Solidity unchecked only where
provably safe.

• Invariant enforcement: post-swap check
(
R′

0 ×R′
1

)
≥

(
R0 ×R1

)
, adjusted for fees.

• Slippage & expiry: user-supplied min/max bounds and deadlines guard UX.
• Permissioned actions: only feeToSetter may update fee parameters.
Independent audits are ongoing; bug-bounty details will be announced on-chain at the

security.zamm.eth domain.

10 Performance Benchmarks

Operation ZAMM UniV2 UniV3 UniV4

Exact-In swap 45 507 84 293 115 522 92 090
2-hop route 70 529 140 377 363 231 128 802
Add liquidity 74 112 107 235 140 012 119 501

Table 1: Gas used on Ethereum mainnet (Foundry snapshot, Jun 2025)

ZAMM remains ≈2× cheaper than Uniswap V2 and ≈5× cheaper than V3 on multi-hop
paths.

11 Developer Integration

11.1 Getting Balances

Use the standard balanceOf(owner, id) view on the ZAMM address for both coins and LP
shares.

4



ZAMM Whitepaper May 2025

11.2 Approvals and Deposits

• ERC-6909 blanket (EOA): grant ZAMM full pull rights once with
setOperator(zamm, true). This single transaction authorizes every id, including future
coins.

• ERC-6909 per-id: for tighter limits, approve just the asset you intend to trade via
approve(zamm, id, amount), analogous to an ERC-20 allowance.

• ERC-20: call the standard approve(zamm, type(uint256).max) (or a custom cap) so
ZAMM can transferFrom during swaps or liquidity actions.

• Flash-credit flow (deposit()): Pre-load assets into ZAMM’s transient table to avoid
intermediate transfers in a multi-hop route:

deposit(token, id, amount) — ETH uses token = 0x00.

– Self-custody (ERC-7702) — a smart-account wallet can embed one or more deposit()

calls in its user-op, followed by the multi-hop swap bundle. The bundler pays gas
once; ZAMM reads the credits hop-by-hop.

– External router — a helper contract deposits on behalf of the trader, executes the
swap path, and finally refunds any unused credit with recoverTransientBalance().

No allowances are touched; credits live only for the current transaction and cost ˜200 gas
instead of ˜15k for a real on-chain transfer.

11.3 Launching a Market

1. Call coin(msg.sender, supply, URI) to mint a coin id.
2. Provide seed liquidity through addLiquidity using ETH, an ERC-20, or another id.
3. Publish the pair’s poolId (hash of the PoolKey) so wallets can query reserves.
Sample scripts are available in the zamm-examples repository.

12 Roadmap

• Hook-based Liquidity Adapters (CL-ZAMM): autonomous cooks that withdraw,
rebalance and re-add their own LP to mimic concentrated-range, pseudo-stableswap or
volatility-band behaviour. They keep any trading fees their LP earns and simply sit idle
(full-range fallback) when outside the target band.

• General-purpose Cook Hooks – permissionless contracts referenced via feeOrHook.
A cook may simply act as a policy layer (e.g. dynamic fees, oracle checks) or expose
deposits by minting its own share token. When a share is needed, we prefer issuing it as
an ERC-6909 id so the entire stack lives on a single multitoken ledger, but ERC-20 (or
none) remains equally valid.

• Layer-2 deployments: deterministic CREATE3 roll-outs on Optimism, Base, and Arbitrum
so all networks share one canonical ZAMM address, unifying liquidity and tooling across
chains.

13 Conclusion

ZAMM distills the AMM to its essence: one constant-product equation, one multitoken ledger,
and one contract address. The result is a system that ordinary users can grasp, developers can
integrate in minutes, and the Ethereum network can execute with minimal gas. We invite the
community to review, benchmark, and build on top—ZAMM is designed as a foundation, not a
walled garden.

5

https://github.com/zammdefi/zamm/tree/main/examples


ZAMM Whitepaper May 2025

Simple • Efficient • Complete

A Appendix A: PoolId Derivation

function _getPoolId(PoolKey calldata key) pure returns (uint256 id) {

assembly {

let m := mload(0x40) // free memory pointer

calldatacopy(m, key , 0xa0) // copy 5*32 bytes

id := keccak256(m, 0xa0) // deterministic

}

}

The hash commits to token addresses, ids, and fee tier, ensuring a single canonical market
regardless of parameter order.

Given reserves (R0, R1) and an input ∆0 (after the fee factor ϕ has been applied), the
post-swap reserves are

R′
0 = R0 + ϕ∆0, R′

1 =
R0R1

R′
0

.

Hence

R′
0R

′
1 =

(
R0 + ϕ∆0

) R0R1

R0 + ϕ∆0
= R0R1,

so the fee-adjusted constant-product invariant holds with equality. (The trader’s effective input
is reduced by the fee; the pool’s reserves remain on the same xy = k curve.)

6


	Motivation
	Design Goals
	System Overview
	Actors
	Key Primitives

	Core Algorithms
	Swap
	Liquidity Management

	Factory Mint (!coin()!)
	Hook Extension System (“Cooks”)
	Order-Book and Timelock Escrow
	Transient Storage: Flash Credits
	Security Analysis
	Performance Benchmarks
	Developer Integration
	Getting Balances
	Approvals and Deposits
	Launching a Market

	Roadmap
	Conclusion
	Appendix A: PoolId Derivation

